
575 

A note on the application of the supersonic area rule to 
the determination of the wave drag of rectangular wings 

By R. C. LOCK 
Aerodynamics Division, National Physical Laboratory, Teddington 

(Received 12 April 1957) 

SUMMARY 
A proof is given that, in spite of certain singularities in the 

oblique area distributions, the supersonic area rule can be used to 
determine correctly the wave drag, according to linearized theory, 
of thin symmetrical rectangular wings at zero incidence. The  proof 
could be extended to cover the case of swept wings with supersonic 
edges, for which similar singularities also exist. 

1. INTRODUCTION 
It has recently been suggested that the ‘ supersonic area rule ’ (Jones 

1953), when used to determine the wave drag at zero lift of wings with 
straight supersonic edges, gives results which disagree with those of con- 
ventional thin wing theory, due to certain singularities which appear in 
the oblique area distributions. It is the purpose of the present note to 
show that this is not the case, provided that these singularities are handled 
with care. A proof is given of the equivalence of the wave drag as calculated 
by the two methods for unswept wings of rectangular planform; the proof 
could easily be extended to cover the case of untapered swept wings with 
supersonic leading and trailing edges. 

2. THE SUPERSONIC AREA RULE 

We consider a rectangular wing of unit chord and span b = Zs, and use 
standard rectangular axes with origin 0 at the centre of the leading edge, 
Ox in the direction of the free stream, Oy along the leading edge and OZ 
vertically upward ; we shall also use cylindrical coordinates r = d ( y 2  + 2) 
and 0 = tan-lzly. The  wing section, which must be symmetrical with 
sharp leading and trailing edges, is taken to be 

and we define f ( x )  to be zero outside this range. 
T h e  area rule for calculating the wave drag, according to the linearized 

theory of supersonic flow, of any body which can be represented solely by 
a distribution of sources, may be deduced from considerations of momentum 
flux across the large cylinder r = R ;  use is made of Hayes’s theorem on 
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equivalent source positions (see, for example, Heaslet, Lomax & Spreiter 
1952), which states that, for closed source distributions at large values 
of r and for a given value of 8, the flow due to a unit source is independent 
of its position on the plane 

x = xo+,5(ycos8+xsin8), (2) 
where xo is constant and /3 = z / ( M 2 -  1). When applied to plane wings, 
for which the source strength is proportional to the local slope of the surface 
in the x-direction, the theorem shows that the planar source distribution 
may be concentrated onto the x-axis so that, again for a given value of 8,  
the effect at  large distances is the same as that of an ‘equivalent body of 
revolution ’ whose cross-sectional area at x = ( is S(f, 8), defined as the area 
of the projection on a plane normal to the axis Ox of the section of the wing 
by the plane. 

x = (+/3ycostl. (3) 
In this way the following well-known formula for the wave drag D may 

be obtained: 

where po and U are the density and velocity of the free stream, S( ( ,8 )  is 
defined above, and primes denote differentiation with respect to ( (or 7). 
For symmetrical unyawed wings this reduces to 

In order that equations (4) and ( 5 )  shall be valid, it is necessary that 
S‘((,8) shall be a continuous function of [, though S ’ ( [ , O )  may have a 
finite number of discontinuities. But it is evident that, in the case of a 
rectangular wing, this requirement is not satisfied when 8 = Qrr; S(f, hrr) 
is in fact proportional toy([), with discontinuities at f = 0 and 1.  To put 
this in another way, we see that when the source distribution representing 
the wing is concentrated onto the axis along lines x = 6 (cf. (3) with 8 = in) 

parallel to the leading edge, the resulting axial distribution is of finite strength 
at the leading and trailing edges ; and such a distribution is inadmissible 
since it leads to infinite velocities on the Mach cones from these points. 
Physically, the situation is due to the fact that (according to unmodified 
linearized theory), the flow in the plane 8 = &T is always partly two- 
dimensional in character, with leading and trailing edge shocks of first 
order strength, however large R may be; and such a flow can never be 
represented by a continuous distribution of purely axial sources. The 
effect is however concentrated, so far as the control surface r = R is 
concerned, in the immediate neighbourhood of the points (PR, 0, f R) 
and (PR+ 1, 0, ? R) (when R is sufficiently large); and such isolated 
singularities do not invalidate the use of equations (4) and (5) for the overall 
wave drag, provided that care is taken near 8 = k 4.r. 
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3. DETERMINATION OF OBLIQUE AREA DISTRIBUTIONS 

It is convenient to write 

There are two principal cases to be considered, according as u $ 8. 
(a) a 2 4 or lsec 81 d 2Ps (see figure 1 a). Since the sections in question 

are simply oblique sections of a cylinder, it is easily seen that 

a(8) = ps cos 8. 

(b )  0 < a < 1 or (sec 81 >, 2Ps (see figure 1 b). In this case the sections 
for a < t < 1 - a cut both wing tips, and the results have to be 
modified as follows : 

- - 7 ji-g f ( x )  dx (1-a < f < 1 +a). (8b) 

Figure 1 .  Determination of oblique area distributions. S is the projection of the 

Differentiating (6) to (8) with respect to 5, we find that in both cases 

shaded area on a plane perpendicular to Ox. 
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remembering that f(x) =f’(x) = 0 for x < 0 and x > 1. 
it is evident that 

When 8 = &, 

S’(5,&7) = 2sf’((). (11) 

The  function S’((,8) is sketched for some typical cases of a biconvex 
section in figure 2. It is clear that, except when 8 = in, S’((, 8) is 
everywhere continuous as required in (S), though S([, 8) has four 
discontinuities. 

Figure 2. The function S’(5, 8). 

4. EVALUATION OF THE WAVE DRAG 

Substituting from (10) in (5), we obtain 

+f’(t - .)f’(?- .) -f’(5 + o)f’(Yj - u) -f’([ - u)f’(Yj + a)}. (12) 
Each of the four double integrals with respect to ( and q may be simplified 
by linear transformations of the type 

= x, 

Yj?0=Y, 
leading to the result 

When the functionf(x) is given, the double integral with respect to x and y 
can be evaluated directly, and it is found that the resulting function of 8 is 
integrable over the range 0 to &T and yields the correct result for the wave 
drag D. But in order to obtain a general result it is clearly necessary to 
perform the integration with respect to 8 first ; this must however be done 
with care, since the function 

although regular as 8 --f J T  if x # y and having only logarithmic singu- 
larities if 8 # in, has an essential singularity when 8 = &, x = y .  The  
triple integral (13) for D cannot therefore be expressed as a volume integral, 
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and the order of integration cannot be inverted in the usual way ; but this 
difficulty may be overcome as follows, 

An alternative expression for D is 

and this may be written in the form 

where 

and 
pzb2 cos2d 

I,(€) = 
0 0 - S - E  (. -y)2 

sec2d dd 1' f ' ( x )  dx f ' ( y  )log1 1 - 

The  singularity at 0 = in, x = y ,  has been isolated from the region of 
integration in I', so that the integration with respect to d may be performed 
first. 

Using the result (see Appendix) 
-In 

0 
J F(B,x,y) d0 = -n ( E  < Ix-yl G Pb), 

= -n{1- ,/[I- i;-]>(Ix-yl ma 2 Pb), 

we obtain 

I,(€) = - i7 /If'(x) dx / r E f ' ( y )  dy + 
-1 f'(x) d x  Jr i l" f ' (y)  d{ 1 - F} dy ; 

0 X-YI2 
the second integral occurs only if /3b < 1. 

Now 

I' f '(x) dx Ix- ' f ' (y)  dy = [ f ' ( x ) f ( x  - E) dx = O(E), 
0 0 0 

since 

Hence 

1; f ' ( x ) f ( x )  dx = 0. 

I n  evaluating I, we must retain the original order of integration. Now 

= f '(x){l + O(E)}  { E log11 - c0s2 61 + pb cos 8 log 
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Thus 

= (1 + O(E)j (l ( f ’ ( ~ ) } ~  dx x 
0 

Using the results proved in the Appendix 

,:” secVlog/l- ~ c o s 2 0 1 d d  = -T ( E  < Pb), 

1 + (/3b/€)COS 0 
d8 = (E < pb), 

1 - (/?b/E)COS 0 J+ sec 0 log1 
0 

we find that I2(e) = $n2@ 1; {f’(~)}~ dx { 1 + O(E) j. 

Substituting from equations (19) and (20) in (15), and taking the limit 
as E -+ 0, we obtain finally 

Equation (21 a) is simply the well-known result that the drag coefficient 
of a rectangular wing is equal to the corresponding two-dimensional value, 
being unaffected by the presence of the wing tips, provided that the aspect 
ratio is greater than /3-l; equation (21 b) contains the additional term that 
has to be added when the aspect ratio is less than p-l, and it has been verified 
that for a biconvex section this gives results in agreement with those of 
Harmon (1947). 

5. CONCLUSIONS 
The argument given above shows that the area rule can be applied 

successfully to determine the wave drag of a rectangular wing, in spite of 
the singular area distribution which occurs when 0 = g ~ ,  the meaning of 
which has been discussed in $2. In  fact the complications introduced by 
this singularity in the anlysis of $ 4 are due to the necessity of inverting the 
order of integration in (13) in order to obtain a general proof; if the 
integrations with respect to x and y had been performed first no such 
difficulty would have been experienced, though it should be mentioned 
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that, in view of the simplicity of the final result, the labour involved is quite 
considerable, even for a simple biconvex section. 

I t  is evident that the method of proof given in the present note could 
easily be extended to cover the case of untapered swept wings. Again 
singular area distribution would occur when 8 = cos-l(/?l tan A), where A 
is the angle of sweep, but again they would not lead to serious difficulties. 

APPENDIX. EVALUATION OF TWO DEFINITE INTEGRALS 

In 
$(a)  = I sec2810gll - a  cos28[ d8 (a  > 0). 

0 
(9 

Write tan8 = t ;  then 

( a )  If a < 1, write 1 - a  = c2; then 

00 t 
It - *  = [ t log (-) + 2c tan-1 - - 2 tan-1 t 

C 

= ( c -  1 ) ~  = -n{ l -  1 / ( 1  - a ) } .  

(b )  If a > 1, 

?!J = 

write a - 1 = d2 ; then 

1 - tacos8  
(ii) 

= J;secBlogll +acosBIdO. 

d d8 

We shall first show that J(a)  is independent of a ,  if a 3 1. For 

where the Cauchy principal value must be taken. Writing tan $8 = 7, we 
find that 

d 2 d-r where u = J(,+1), a -  1 
-?<a> da =-I (1+a) " - cc'L-T2' 

cc+r 
= 0. 

1 
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The work described above was carried out in the Aerodynamics Division 
of the National Physical Laboratory and is published by permission of the 
Director of the Laboratory. 
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